SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Extended search

LAR1:liu
 

Search: LAR1:liu > Syväjärvi Mikael > Nanoporous Cubic Si...

Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting

Jian, Jingxin (author)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten
Jokubavicius, Valdas (author)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten
Syväjärvi, Mikael (author)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten
show more...
Yakimova, Rositsa (author)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten
Sun, Jianwu (author)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten
show less...
 (creator_code:org_t)
2021-02-19
2021
English.
In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:3, s. 5502-5512
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Cubic silicon carbide (3C-SiC) is a promising photoelectrode material for solar water splitting due to its relatively small band gap (2.36 eV) and its ideal energy band positions that straddle the water redox potentials. However, despite various coupled oxygen-evolution-reaction (OER) cocatalysts, it commonly exhibits a much smaller photocurrent (<similar to 1 mA cm(-2)) than the expected value (8 mA cm(-2)) from its band gap under AM1.5G 100 mW cm(-2) illumination. Here, we show that a short carrier diffusion length with respect to the large light penetration depth in 3C-SiC significantly limits the charge separation, thus resulting in a small photocurrent. To overcome this drawback, this work demonstrates a facile anodization method to fabricate nanoporous 3C-SiC photoanodes coupled with Ni:FeOOH cocatalyst that evidently improve the solar water splitting performance. The optimized nanoporous 3C-SiC shows a high photocurrent density of 2.30 mA cm(-2) at 1.23 V versus reversible hydrogen electrode (V-RHE) under AM1.5G 100 mW cm(-2) illumination, which is 3.3 times higher than that of its planar counterpart (0.69 mA cm(-2) at 1.23 V-RHE). We further demonstrate that the optimized nanoporous photoanode exhibits an enhanced light-harvesting efficiency (LHE) of over 93%, a high charge-separation efficiency (Phi(sep)) of 38%, and a high charge-injection efficiency (Phi(ox)) of 91% for water oxidation at 1.23 V-RHE, which are significantly outperforming those its planar counterpart (LHE = 78%, Phi(sep) = 28%, and Phi(ox) = 53% at 1.23 V-RHE). All of these properties of nanoporous 3C-SiC enable a synergetic enhancement of solar water splitting performance. This work also brings insights into the design of other indirect band gap semiconductors for solar energy conversion.

Subject headings

NATURVETENSKAP  -- Kemi -- Oorganisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Inorganic Chemistry (hsv//eng)

Keyword

nanoporous cubic silicon carbide (3C-SiC); photoelectrochemical water splitting; solar-to-hydrogen conversion; anodization; charge-separation efficiency

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • ACS Nano (Search for host publication in LIBRIS)

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view